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Part I

Introduction
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Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24



Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24



Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24



Causal inference: learning causal relations from data

Definition

X causes Y (X 99KY ) = intervening upon (changing) X changes Y

We can represent causal relations with a causal DAG (hidden vars):

X Y E.g. X = Smoking, Y = Cancer

Causal inference = structure learning of the causal DAG

Traditionally, causal relations are inferred from interventions.

Sometimes, interventions are unethical, unfeasible or too expensive

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 3 / 24



Causal inference from observational and experimental data

Holy Grail of Causal Inference

Learn as much causal structure as possible from observations,
integrating background knowledge and experimental data.

Constraint-based causal discovery: use statistical independences to
express constraints over possible causal models

Intuition: Under certain assumptions, independences in the data
correspond with d-separations in a causal DAG

Issues:

1 Vulnerability to errors in statistical independence tests

2 No estimation of confidence in the causal predictions
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Causal inference as an optimization problem (e.g. HEJ)

Weighted list of statistical independence results: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}

For any possible causal structure C , we define the loss function:

Loss(C , I ) :=
∑

(ij ,wj )∈I : ij is not satisfied in C

wj

“ij is not satisfied in C” = defined by causal reasoning rules

Causal inference = Find causal structure minimizing loss function

C ∗ = arg min
C∈C

Loss(C , I )

Problem: Scalability

HEJ [Hyttinen et al., 2014]
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Part II

Ancestral Causal Inference
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A more coarse grained representation

Can we improve scalability of the most accurate state-of-the-art
method (HEJ)?

Ancestral Causal Inference: Main Idea

Instead of representing direct causal relations use a more
coarse-grained representation of causal information, e.g., an
ancestral structure (a set of “indirect” causal relations).

X Y Z

Ancestral structures reduce drastically search space

For 7 variables: 2.3× 1015 → 6× 106
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Causal inference as an optimization problem (Reprise)

Weighted list of inputs: I = {(ij ,wj)}:

E.g. I = { (Y ⊥⊥Z |X , 0.2), (Y 6⊥⊥X , 0.1)}, (U 99KZ , 0.8) }

Any consistent weighting scheme, e.g. frequentist, Bayesian

For any possible ancestral structure C , we define the loss function:

Loss(C , I ) :=
∑

(ij ,wj )∈I : ij is not satisfied in C

wj

Here: “ij is not satisfied in C” = defined by ancestral reasoning rules

Causal inference = Find ancestral structure minimizing loss function

C ∗ = arg min
C∈C

Loss(C , I )
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Ancestral reasoning rules: Example

ACI rules: 7 ancestral reasoning rules that given (in)dependences
constrain possible (non) ancestral relations

Example

For X , Y , W disjoint (sets of) variables:

(X ⊥⊥Y |W ) ∧ (X 699KW ) =⇒ X 699KY

X ⊥⊥Y |W = “X is independent of Y given a set of variables W ”

∧ “and”

X 699KW = “X does not cause any variable in the set W ”

=⇒ = “then”

X 699KY = “X does not cause Y ”
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A method for scoring causal predictions

Score the confidence in a predicted statement s (e.g. X 99KY ) as:

C (f ) = min
C∈C
Loss(C , I + (¬s,∞))

−min
C∈C
Loss(C , I + (s, ∞))

≈ MAP approximation of the log-odds ratio of s

Asymptotically consistent, when consistent input weights

Can be used with any method that solves an optimization problem
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Part III

Evaluation
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Simulated data accuracy: example Precision Recall curve
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ACI is as accurate as HEJ + our scoring method
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Simulated data execution time

ACI is orders of magnitude faster than HEJ

The difference grows exponentially in the number of variables

HEJ is not feasible for more than 8 variables
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Application: Reconstructing a Protein Signalling Network

Raf
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Black edges = overlap

Consistent with score-based method [Mooij and Heskes, 2013]
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Conclusion

Ancestral Causal Discovery (ACI), a causal discovery method as
accurate as the state-of-the-art but much more scalable

A method for scoring causal relations by confidence

Source code: http://github.com/caus-am/aci

Poster: WIML, 1.30pm - 2.30pm, poster 3

Poster: NIPS, Tuesday 6pm - 9.30pm, poster 81

Talk on extensions of ACI at “What If?” NIPS workshop, Saturday
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Part IV

Backup slides
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Infinite weights: Soundness

ACI is sound for predicting ancestral relations:

Theorem

The confidence scores C (X 99KY ) are sound for oracle inputs with infinite
weights, i.e.:

C (X 99KY ) =


∞ if X 99KY is identifiable,

−∞ if X 699KY is identifiable,

0 otherwise.
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Finite Weights: Definition and Consistency

We propose two choices for the weights:

Frequentist Weights: wj = |log pj − logα|
where pj is the p-value of a statistical test for ij , and α a threshold.

Bayesian Weights: wj = log p(ij | data)− log p(¬ij | data).

Under mild assumptions, such weights are consistent, i.e., as sample size
N →∞, for the frequentist weights:

log p(N) − logα(N) P→

{
−∞ H1

+∞ H0,

when α(N) → 0 at a suitable rate, or for the Bayesian weights:

wN
P→

{
−∞ if ij is true

+∞ if ij is false.

The probability of a type I and type II errors will then converge to 0.
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Finite Weights: Soundness and Consistency

ACI is consistent for predicting ancestral relations:

Theorem

The confidence scores C (X 99KY ) are asymptotically consistent, i.e.:

C (X 99KY )
P→


∞ if X 99KY is identifiable,

−∞ if X 699KY is identifiable,

0 otherwise.

Sara Magliacane (VU, UvA) Ancestral Causal Inference 5-12-2016 20 / 24



Complete ACI rules

Trivial rules:

1 X 99KY ∧ Y 99KZ =⇒ X 99KZ (transitivity)

2 X 99KY =⇒ Y 699KX (acyclicity)

For X , Y , W disjoint (sets of) variables:

1 (X ⊥⊥Y |W ) ∧ (X 699KW ) =⇒ X 699KY
2 X 6⊥⊥Y |W ∪ [Z ] =⇒ (X 6⊥⊥Z |W ) ∧ (Z 699K {X ,Y } ∪W )

3 X ⊥⊥Y |W ∪ [Z ] =⇒ (X 6⊥⊥Z |W ) ∧ (Z 99K {X ,Y } ∪W )

4 (X ⊥⊥Y |W ∪ [Z ]) ∧ (X ⊥⊥Z |W ∪ U) =⇒ (X ⊥⊥Y |W ∪ U)

5 (Z 6⊥⊥X |W ) ∧ (Z 6⊥⊥Y |W ) ∧ (X ⊥⊥Y |W ) =⇒ X 6⊥⊥Y |W ∪ Z

6 X 699KW ∧ X 699KZ ∧ Z ⊥⊥Y |W ∪ [X ] =⇒
p
(
Y | do(X )

)
=
∫
p(Y |X ,W )p(W ) dW

[Claassen and Heskes, 2011], [Entner et al., 2013], [Magliacane et al., 2016]
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Applications of causal inference

Example (Genomics)

How to infer gene regulatory networks from micro-array data?
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Probabilistic inference vs. causal inference

Traditional statistics, machine learning

Models the distribution of the data

Focuses on predicting observations

Useful e.g. in medical diagnosis: given the symptoms, what is the
most likely disease?

Causal Inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?
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Constraint-based causal discovery

Constraint-based: use statistical independences to express constraints
over possible causal models.

... but wait, correlation does not imply causation, see XCKD:

True, but it does imply something:

If A and B are correlated, A causes B or B causes A or they
share a latent common cause. (Hans Reichenbach)

Idea: Under certain assumptions, independences in the data correspond
with d-separations in a causal graph.
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